Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
BMC Microbiol ; 24(1): 69, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418983

RESUMO

Liver steatosis is the most frequent liver disorder and its advanced stage, non-alcoholic steatohepatitis (NASH), will soon become the main reason for liver fibrosis and cirrhosis. The "multiple hits hypothesis" suggests that progression from simple steatosis to NASH is triggered by multiple factors including the gut microbiota composition. The Epstein Barr virus induced gene 2 (EBI2) is a receptor for the oxysterol 7a, 25-dihydroxycholesterol synthesized by the enzymes CH25H and CYP7B1. EBI2 and its ligand control activation of immune cells in secondary lymphoid organs and the gut. Here we show a concurrent study of the microbial dysregulation and perturbation of the EBI2 axis in a mice model of NASH.We used mice with wildtype, or littermates with CH25H-/-, EBI2-/-, or CYP7B1-/- genotypes fed with a high-fat diet (HFD) containing high amounts of fat, cholesterol, and fructose for 20 weeks to induce liver steatosis and NASH. Fecal and small intestinal microbiota samples were collected, and microbiota signatures were compared according to genotype and NASH disease state.We found pronounced differences in microbiota composition of mice with HFD developing NASH compared to mice did not developing NASH. In mice with NASH, we identified significantly increased 33 taxa mainly belonging to the Clostridiales order and/ or the family, and significantly decreased 17 taxa. Using an Elastic Net algorithm, we suggest a microbiota signature that predicts NASH in animals with a HFD from the microbiota composition with moderate accuracy (area under the receiver operator characteristics curve = 0.64). In contrast, no microbiota differences regarding the studied genotypes (wildtype vs knock-out CH25H-/-, EBI2-/-, or CYP7B1-/-) were observed.In conclusion, our data confirm previous studies identifying the intestinal microbiota composition as a relevant marker for NASH pathogenesis. Further, no link of the EBI2 - oxysterol axis to the intestinal microbiota was detectable in the current study.


Assuntos
Infecções por Vírus Epstein-Barr , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Oxisteróis , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4 , Fígado/patologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Front Immunol ; 14: 1280262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045684

RESUMO

Introduction: Combination antiretroviral therapy (cART) effectively controls HIV; however, chronic low-level viremia and gut microbiota dysbiosis remain significant drivers of gut and systemic inflammation. In this study, we explored the relationship between gut microbiota composition, intestinal inflammation, microbial translocation, and systemic inflammation in women on cART in Sub-Saharan Africa. Methods: We conducted a study in HIV-infected and HIV-uninfected lactating women followed up at 6 weeks and 6 months postpartum in Harare, Zimbabwe. We used 16S ribosomal Ribonucleic Acid (rRNA) sequencing and MesoScale Discovery V-Plex assays to examine the gut microbiome and to quantify plasma inflammatory biomarkers, respectively. In addition, we measured fecal calprotectin, plasma lipopolysaccharide-binding protein (LBP), and soluble cluster of differentiation 14 (sCD14) by enzyme-linked immunosorbent assay to assess gut inflammation, microbial translocation, and monocyte/macrophage activation. Results: A group of 77 lactating women were studied, of which 35% were HIV-infected. Fecal calprotectin levels were similar by HIV status at both follow-up time points. In the HIV-infected group at 6 weeks postpartum, fecal calprotectin was elevated: median (interquartile range) [158.1 µg/g (75.3-230.2)] in women who had CD4+ T-lymphocyte counts <350 cells/µL compared with those with ≥350 cells/µL [21.1 µg/g (0-58.4)], p = 0.032. Plasma sCD14 levels were significantly higher in the HIV-infected group at both 6 weeks and 6 months postpartum, p < 0.001. Plasma LBP levels were similar, but higher levels were observed in HIV-infected women with elevated fecal calprotectin. We found significant correlations between fecal calprotectin, LBP, and sCD14 with proinflammatory cytokines. Gut microbial alpha diversity was not affected by HIV status and was not affected by use of antibiotic prophylaxis. HIV significantly affected microbial beta diversity, and significant differences in microbial composition were noted. The genera Slackia and Collinsella were relatively more abundant in the HIV-infected group, whereas a lower relative abundance of Clostriduim sensu_stricto_1 was observed. Our study also found correlations between gut microbial taxa abundance and systemic inflammatory biomarkers. Discussion and conclusion: HIV-infected lactating women had increased immune activation and increased microbial translocation associated with increased gut inflammation. We identified correlations between the gut inflammation and microbial composition, microbial translocation, and systemic inflammation. The interplay of these parameters might affect the health of this vulnerable population.


Assuntos
Microbioma Gastrointestinal , Infecções por HIV , Humanos , Feminino , Terapia Antirretroviral de Alta Atividade , Receptores de Lipopolissacarídeos , Lactação , Infecções por HIV/tratamento farmacológico , Zimbábue , Inflamação/tratamento farmacológico , Biomarcadores , Complexo Antígeno L1 Leucocitário
3.
Sci Rep ; 13(1): 22921, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129468

RESUMO

Major surgery exposes the intestinal microbiota to inflammatory and antibiotic stressors, which alter the microbiota composition of the intestinal lumen and fecal contents. However, it is not sufficiently understood, if such dysbiosis develops already during surgery and if alterations in microbiota may be the cause of surgical complications. End-of-surgery composition of the microbiota in the rectum was assessed in 41 patients undergoing either rectal or duodenopancreatic resection and was compared to baseline before surgery using 16S-rRNA sequencing. A subset of patients developed severe dysbiosis at the end of surgery, which was characterized by an overgrowth of the Proteobacteria phylum that includes the facultative pathogen E. coli. To test if dysbiosis impacts on surgical outcomes, dysbiosis was modeled in mice by a single oral administration of vancomycin prior to cecal ligation and puncture. Dysbiosis was associated with impaired post-surgical survival, dysregulation of the host's immune response, elevated bacterial virulence and reduced bacterial metabolism of carbon sources. In conclusion, dysbiosis can be detected already at the end of surgery in a fraction of patients undergoing major surgery. Modelling surgery-associated dysbiosis in mice using single-shot administration of vancomycin induced dysbiosis and resulted in elevated mortality.


Assuntos
Disbiose , Sepse , Humanos , Camundongos , Animais , Disbiose/microbiologia , Vancomicina , Escherichia coli/genética , Reto , Sepse/microbiologia , RNA Ribossômico 16S/genética
4.
BMC Pediatr ; 23(1): 560, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37946167

RESUMO

BACKGROUND: Microbiota composition is fundamental to human health with the intestinal microbiota undergoing critical changes within the first two years of life. The developing intestinal microbiota is shaped by maternal seeding, breast milk and its complex constituents, other nutrients, and the environment. Understanding microbiota-dependent pathologies requires a profound understanding of the early development of the healthy infant microbiota. METHODS: Two hundred and fifty healthy pregnant women (≥20 weeks of gestation) from the greater Bern area will be enrolled at Bern University hospital's maternity department. Participants will be followed as mother-baby pairs at delivery, week(s) 1, 2, 6, 10, 14, 24, 36, 48, 96, and at years 5 and 10 after birth. Clinical parameters describing infant growth and development, morbidity, and allergic conditions as well as socio-economic, nutritional, and epidemiological data will be documented. Neuro-developmental outcomes and behavior will be assessed by child behavior checklists at and beyond 2 years of age. Maternal stool, milk, skin and vaginal swabs, infant stool, and skin swabs will be collected at enrolment and at follow-up visits. For the primary outcome, the trajectory of the infant intestinal microbiota will be characterized by 16S and metagenomic sequencing regarding composition, metabolic potential, and stability during the first 2 years of life. Secondary outcomes will assess the cellular and chemical composition of maternal milk, the impact of nutrition and environment on microbiota development, the maternal microbiome transfer at vaginal or caesarean birth and thereafter on the infant, and correlate parameters of microbiota and maternal milk on infant growth, development, health, and mental well-being. DISCUSSION: The Bern birth cohort study will provide a detailed description and normal ranges of the trajectory of microbiota maturation in a high-resource setting. These data will be compared to data from low-resource settings such as from the Zimbabwe-College of Health-Sciences-Birth-Cohort study. Prospective bio-sampling and data collection will allow studying the association of the microbiota with common childhood conditions concerning allergies, obesity, neuro-developmental outcomes , and behaviour. Trial registration The trial has been registered at www. CLINICALTRIALS: gov , Identifier: NCT04447742.


Assuntos
Microbioma Gastrointestinal , Criança , Lactente , Humanos , Feminino , Gravidez , Estudos de Coortes , Coorte de Nascimento , Estudos Prospectivos , Suíça/epidemiologia
5.
Children (Basel) ; 10(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37371177

RESUMO

D-lactate is produced in very low amounts in human tissues. However, certain bacteria in the human intestine produce D-lactate. In some gastrointestinal diseases, increased bacterial D-lactate production and uptake from the gut into the bloodstream take place. In its extreme, excessive accumulation of D-lactate in humans can lead to potentially life-threatening D-lactic acidosis. This metabolic phenomenon is well described in pediatric patients with short bowel syndrome. Less is known about a subclinical rise in D-lactate. We discuss in this review the pathophysiology of D-lactate in the human body. We cover D-lactic acidosis in patients with short bowel syndrome as well as subclinical elevations of D-lactate in other diseases affecting the gastrointestinal tract. Furthermore, we argue for the potential of D-lactate as a marker of intestinal barrier integrity in the context of dysbiosis. Subsequently, we conclude that there is a research need to establish D-lactate as a minimally invasive biomarker in gastrointestinal diseases.

6.
Front Genet ; 14: 1184473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180976

RESUMO

Shotgun metagenomic sequencing is a powerful tool for studying bacterial communities in their natural habitats or sites of infection, without the need for cultivation. However, low microbial signals in metagenomic sequencing can be overwhelmed by host DNA contamination, resulting in decreased sensitivity for microbial read detection. Several commercial kits and other methods have been developed to enrich bacterial sequences; however, these assays have not been tested extensively for human intestinal tissues yet. Therefore, the objective of this study was to assess the effectiveness of various wet-lab and software-based approaches for depleting host DNA from microbiome samples. Four different microbiome DNA enrichment methods, namely the NEBNext Microbiome DNA Enrichment kit, Molzym Ultra-Deep Microbiome Prep, QIAamp DNA Microbiome kit, and Zymo HostZERO microbial DNA kit, were evaluated, along with a software-controlled adaptive sampling (AS) approach by Oxford Nanopore Technologies (ONT) providing microbial signal enrichment by aborting unwanted host DNA sequencing. The NEBNext and QIAamp kits proved to be effective in shotgun metagenomic sequencing studies, as they efficiently reduced host DNA contamination, resulting in 24% and 28% bacterial DNA sequences, respectively, compared to <1% in the AllPrep controls. Additional optimization steps using further detergents and bead-beating steps improved the efficacy of less efficient protocols but not of the QIAamp kit. In contrast, ONT AS increased the overall number of bacterial reads resulting in a better bacterial metagenomic assembly with more bacterial contigs with greater completeness compared to non-AS approaches. Additionally, AS also allowed for the recovery of antimicrobial resistance markers and the identification of plasmids, demonstrating the potential utility of AS for targeted sequencing of microbial signals in complex samples with high amounts of host DNA. However, ONT AS resulted in relevant shifts in the observed bacterial abundance, including 2 to 5 times more Escherichia coli reads. Furthermore, a modest enrichment of Bacteroides fragilis and Bacteroides thetaiotaomicron was also observed with AS. Overall, this study provides insight into the efficacy and limitations of various methods for reducing host DNA contamination in human intestinal samples to improve the utility of metagenomic sequencing.

7.
Cell Rep ; 42(3): 112269, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36933213

RESUMO

It is generally believed that environmental or cutaneous bacteria are the main origin of surgical infections. Therefore, measures to prevent postoperative infections focus on optimizing hygiene and improving asepsis and antisepsis. In a large cohort of patients with infections following major surgery, we identified that the causative bacteria are mainly of intestinal origin. Postoperative infections of intestinal origin were also found in mice undergoing partial hepatectomy. CCR6+ group 3 innate lymphoid cells (ILC3s) limited systemic bacterial spread. Such bulwark function against host invasion required the production of interleukin-22 (IL-22), which controlled the expression of antimicrobial peptides in hepatocytes, thereby limiting bacterial spread. Using genetic loss-of-function experiments and punctual depletion of ILCs, we demonstrate that the failure to restrict intestinal commensals by ILC3s results in impaired liver regeneration. Our data emphasize the importance of endogenous intestinal bacteria as a source for postoperative infection and indicate ILC3s as potential new targets.


Assuntos
Imunidade Inata , Linfócitos , Camundongos , Animais , Linfócitos/metabolismo , Regeneração Hepática , Interleucinas/metabolismo , Pele/metabolismo
8.
Cell Rep ; 42(2): 112084, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36753416

RESUMO

Intestinal mucus barriers normally prevent microbial infections but are sensitive to diet-dependent changes in the luminal environment. Here we demonstrate that mice fed a Western-style diet (WSD) suffer regiospecific failure of the mucus barrier in the small intestinal jejunum caused by diet-induced mucus aggregation. Mucus barrier disruption due to either WSD exposure or chromosomal Muc2 deletion results in collapse of the commensal jejunal microbiota, which in turn sensitizes mice to atypical jejunal colonization by the enteric pathogen Citrobacter rodentium. We illustrate the jejunal mucus layer as a microbial habitat, and link the regiospecific mucus dependency of the microbiota to distinctive properties of the jejunal niche. Together, our data demonstrate a symbiotic mucus-microbiota relationship that normally prevents jejunal pathogen colonization, but is highly sensitive to disruption by exposure to a WSD.


Assuntos
Mucosa Intestinal , Jejuno , Mucina-2 , Animais , Camundongos , Dieta Ocidental , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestino Delgado , Mucina-2/genética , Mucina-2/metabolismo , Muco , Citrobacter rodentium/fisiologia
9.
Cell Rep ; 42(2): 112074, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36787741

RESUMO

Immune development is profoundly influenced by vertically transferred cues. However, little is known about how maternal innate-like lymphocytes regulate offspring immunity. Here, we show that mice born from γδ T cell-deficient (TCRδ-/-) dams display an increase in first-breath-induced inflammation, with a pulmonary milieu selectively enriched in type 2 cytokines and type 2-polarized immune cells, when compared with the progeny of γδ T cell-sufficient dams. Upon helminth infection, mice born from TCRδ-/- dams sustain an increased type 2 inflammatory response. This is independent of the genotype of the pups. Instead, the offspring of TCRδ-/- dams harbors a distinct intestinal microbiota, acquired during birth and fostering, and decreased levels of intestinal short-chain fatty acids (SCFAs), such as pentanoate and hexanoate. Importantly, exogenous SCFA supplementation inhibits type 2 innate lymphoid cell function and suppresses first-breath- and infection-induced inflammation. Taken together, our findings unravel a maternal γδ T cell-microbiota-SCFA axis regulating neonatal lung immunity.


Assuntos
Microbioma Gastrointestinal , Imunidade Inata , Animais , Camundongos , Linfócitos , Inflamação , Pulmão , Camundongos Endogâmicos C57BL
10.
BMC Microbiol ; 23(1): 4, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36604616

RESUMO

BACKGROUND: Human immunodeficiency virus (HIV) severely damages the epithelial cells of the gut lining leading to an inflamed leaky gut, translocation of microbial products, and dysbiosis resulting in systemic immune activation. Also, microbiota composition and maternal gut function can be altered in pregnancy through changes in the immune system and intestinal physiology. The aim of this study was to investigate the gut microbiota in HIV-infected and HIV-uninfected pregnant women and to compare and identify the association between gut microbial composition and adverse birth outcomes. RESULTS: A total of 94 pregnant women (35 HIV-infected and 59 HIV-uninfected controls) were recruited in Harare from 4 polyclinics serving populations with relatively poor socioeconomic status. Women were of a median age of 28 years (interquartile range, IQR: 22.3-32.0) and 55% of women were 35 weeks gestational age at enrolment (median 35.0 weeks, IQR: 32.5-37.2). Microbiota profiling in these participants showed that species richness was significantly lower in the HIV-infected pregnant women compared to their HIV-uninfected peers and significant differences in ß-diversity using Bray-Curtis dissimilarity were observed. In contrast, there was no significant difference in α-diversity between immune-compromised (CD4+ < 350 cells/µL) and immune-competent HIV-infected women (CD4+ ≥ 350 cells/µL) even after stratification by viral load suppression. HIV infection was significantly associated with a reduced abundance of Clostridium, Turicibacter, Ruminococcus, Parabacteroides, Bacteroides, Bifidobacterium, Treponema, Oscillospira, and Faecalibacterium and a higher abundance of Actinomyces, and Succinivibrio. Low infant birth weight (< 2500 g) was significantly associated with high abundances of the phylum Spirochaetes, the families Spirochaeteceae, Veillonellaceae, and the genus Treponema. CONCLUSION: The results reported here show that the species richness and taxonomy composition of the gut microbiota is altered in HIV-infected pregnant women, possibly reflecting intestinal dysbiosis. Some of these taxa were also associated with low infant birth weight.


Assuntos
Microbioma Gastrointestinal , Infecções por HIV , Lactente , Gravidez , Humanos , Feminino , HIV , Resultado da Gravidez , Infecções por HIV/microbiologia , Peso ao Nascer , Disbiose , Região de Recursos Limitados , Zimbábue
11.
Cell Host Microbe ; 30(12): 1773-1787.e6, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36318918

RESUMO

The human distal small intestine (ileum) has a distinct microbiota, but human studies investigating its composition and function have been limited by the inaccessibility of the ileum without purging and/or deep intubation. We investigated inherent instability, temporal dynamics, and the contribution of fed and fasted states using stoma samples from cured colorectal cancer patients as a non-invasive access route to the otherwise inaccessible small and large intestines. Sequential sampling of the ileum before and after stoma formation indicated that ileostoma microbiotas represented that of the intact small intestine. Ileal and colonic stoma microbiotas were confirmed as distinct, and two types of instability in ileal host-microbial relationships were observed: inter-digestive purging followed by the rapid postprandial blooming of bacterial biomass and sub-strain appearance and disappearance within individual taxa after feeding. In contrast to the relative stability of colonic microbiota, the human small intestinal microbiota biomass and its sub-strain composition can be highly dynamic.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Adulto , Íleo/microbiologia , Intestino Delgado , Colo/microbiologia
12.
Surg Obes Relat Dis ; 18(11): 1286-1297, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995662

RESUMO

BACKGROUND: Roux-en-Y gastric bypass (RYGB) results in long-term weight loss and reduced obesity related co-morbidities. However, little is known about how the lengths of the biliopancreatic limb (BPL), the alimentary limb (AL), and the common limb (CL) affect weight loss and glucose metabolism. OBJECTIVES: Our aim was to establish a RYGB obese mouse model with defined proportions of the AL and BPL and a constant CL to assess the effects on weight loss,glucose metabolism, and obesity-related co-morbidities. SETTING: In vivo mouse study. METHODS: Six-week-old male C57BL/6J mice fed with a high-fat diet (HFD) underwent bariatric surgery with defined BPL lengths: a very long, long, and short BPL (35%, 25%, and 15% of total bowel length), or sham surgery. The length of the AL was adjusted to achieve the same CL length. Mice were analyzed for weight loss, glycemic control, and obesity-related co-morbidities. RESULTS: Mice undergoing RYGB surgery with a very long BPL had excessive weight loss and mortality and were therefore not further analyzed. Mice with a long BPL showed a significantly increased total weight loss when compared with mice with a short BPL. In addition, a long BPL improved glucose tolerance, particularly early after surgery. A long BPL was also associated with lower triglyceride levels. Resolution of hepatic steatosis and adipose tissue inflammation was, however, not statistically significant. Of note, bariatric surgery dramatically changed gut microbiota, regardless of limb length. CONCLUSION: In obese mice, a long BPL results in enhanced weight loss and improved glucose tolerance. These findings could potentially be translated to humans by tailoring the BPL length according to body weight, obesity-related co-morbidities, and total bowel length of an individual patient.


Assuntos
Derivação Gástrica , Obesidade Mórbida , Masculino , Humanos , Camundongos , Animais , Derivação Gástrica/métodos , Camundongos Obesos , Obesidade Mórbida/cirurgia , Controle Glicêmico , Camundongos Endogâmicos C57BL , Redução de Peso , Obesidade/cirurgia , Glucose
13.
J Gastroenterol ; 57(11): 848-866, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35900592

RESUMO

BACKGROUND: The bidirectional "gut-brain axis" has been implicated in the pathogenesis of inflammatory bowel diseases (IBD). While the influence of stress and depressive symptoms on IBD is well-characterized, the role of personality remains insufficiently investigated. METHODS: Personality was assessed in 1154 Swiss IBD cohort study (SIBDCS) patients via the NEO-Five-Factor Inventory (NEO-FFI) as well as in 2600 participants of the population-based CoLaus¦PsyCoLaus cohort study (NEO-FFI-revised). The NEO-FFI subcomponents activity, self-reproach and negative affect were associated with higher IBD disease activity and were combined to a NEO-FFI risk score. This risk score was validated and its effect on clinical IBD course and psychological endpoints was analysed in time-to-event and cumulative incidence analyses. RESULTS: In time-to-event analyses, a high NEO-FFI risk score was predictive for the clinical endpoints of new extraintestinal manifestation [EIM, adjusted hazard ratio (aHR) = 1.64, corrected p value (q) = 0.036] and two established composite flare endpoints (aHR = 1.53-1.63, q = 0.003-0.006) as well as for the psychological endpoints depressive symptoms (aHR = 7.06, q < 0.001) and low quality of life (aHR = 3.06, q < 0.001). Furthermore, cumulative incidence analyses showed that patients at high NEO-FFI risk experienced significantly more episodes of active disease, new EIMs, one of the flare endpoints, depressive episodes and low disease-related quality of life. Personalities of IBD patients showed only minor differences from the general population sample (Pearson's r = 0.03-0.14). CONCLUSIONS: Personality assessed by the NEO-FFI contained considerable predictive power for disease recurrence, depressive symptoms and low quality of life in IBD patients. Nevertheless, the personalities of IBD patients did not substantially differ from the general population.


Assuntos
Doenças Inflamatórias Intestinais , Qualidade de Vida , Humanos , Inventário de Personalidade , Depressão/epidemiologia , Estudos de Coortes , Personalidade , Doença Crônica
14.
Nat Microbiol ; 7(4): 478-479, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35365788
15.
Commun Biol ; 5(1): 370, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440795

RESUMO

The obesity epidemic continues to worsen worldwide. However, the mechanisms initiating glucose dysregulation in obesity remain poorly understood. We assessed the role that colonic macrophage subpopulations play in glucose homeostasis in mice fed a high-fat diet (HFD). Concurrent with glucose intolerance, pro-inflammatory/monocyte-derived colonic macrophages increased in mice fed a HFD. A link between macrophage numbers and glycemia was established by pharmacological dose-dependent ablation of macrophages. In particular, colon-specific macrophage depletion by intrarectal clodronate liposomes improved glucose tolerance, insulin sensitivity, and insulin secretion capacity. Colonic macrophage activation upon HFD was characterized by an interferon response and a change in mitochondrial metabolism, which converged in mTOR as a common regulator. Colon-specific mTOR inhibition reduced pro-inflammatory macrophages and ameliorated insulin secretion capacity, similar to colon-specific macrophage depletion, but did not affect insulin sensitivity. Thus, pharmacological targeting of colonic macrophages could become a potential therapy in obesity to improve glycemic control.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Animais , Glicemia/metabolismo , Colo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Controle Glicêmico , Macrófagos/metabolismo , Camundongos , Obesidade/etiologia , Obesidade/metabolismo , Serina-Treonina Quinases TOR/metabolismo
16.
Front Microbiol ; 13: 822864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283819

RESUMO

Oxidative stress is a major stress type observed in yeast bioprocesses, resulting in a decrease in yeast growth, viability, and productivity. Thus, robust yeast strains with increased resistance to oxidative stress are in highly demand by the industry. In addition, oxidative stress is also associated with aging and age-related complex conditions such as cancer and neurodegenerative diseases. Saccharomyces cerevisiae, as a model eukaryote, has been used to study these complex eukaryotic processes. However, the molecular mechanisms underlying oxidative stress responses and resistance are unclear. In this study, we have employed evolutionary engineering (also known as adaptive laboratory evolution - ALE) strategies to obtain an oxidative stress-resistant and genetically stable S. cerevisiae strain. Comparative physiological, transcriptomic, and genomic analyses of the evolved strain were then performed with respect to the reference strain. The results show that the oxidative stress-resistant evolved strain was also cross-resistant against other types of stressors, including heat, freeze-thaw, ethanol, cobalt, iron, and salt. It was also found to have higher levels of trehalose and glycogen production. Further, comparative transcriptomic analysis showed an upregulation of many genes associated with the stress response, transport, carbohydrate, lipid and cofactor metabolic processes, protein phosphorylation, cell wall organization, and biogenesis. Genes that were downregulated included those related to ribosome and RNA processing, nuclear transport, tRNA, and cell cycle. Whole genome re-sequencing analysis of the evolved strain identified mutations in genes related to the stress response, cell wall organization, carbohydrate metabolism/transport, which are in line with the physiological and transcriptomic results, and may give insight toward the complex molecular mechanisms of oxidative stress resistance.

17.
Nat Neurosci ; 25(3): 295-305, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241804

RESUMO

Microglial function declines during aging. The interaction of microglia with the gut microbiota has been well characterized during development and adulthood but not in aging. Here, we compared microglial transcriptomes from young-adult and aged mice housed under germ-free and specific pathogen-free conditions and found that the microbiota influenced aging associated-changes in microglial gene expression. The absence of gut microbiota diminished oxidative stress and ameliorated mitochondrial dysfunction in microglia from the brains of aged mice. Unbiased metabolomic analyses of serum and brain tissue revealed the accumulation of N6-carboxymethyllysine (CML) in the microglia of the aging brain. CML mediated a burst of reactive oxygen species and impeded mitochondrial activity and ATP reservoirs in microglia. We validated the age-dependent rise in CML levels in the sera and brains of humans. Finally, a microbiota-dependent increase in intestinal permeability in aged mice mediated the elevated levels of CML. This study adds insight into how specific features of microglia from aged mice are regulated by the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Microglia , Animais , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Microglia/metabolismo , Estresse Oxidativo
18.
Eur J Immunol ; 52(5): 717-729, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35099074

RESUMO

Innate lymphoid cells (ILCs) are important for tissue immune homeostasis, and are thoroughly characterized in mice and humans. Here, we have performed in-depth characterization of rat ILCs. Rat ILCs were identified based on differential expression of transcription factors and lack of lineage markers. ILC3s represented the major ILC population of the small intestine, while ILC2s were infrequent but most prominent in liver and adipose tissue. Two major subsets of group 1 ILCs were defined. Lineage- T-bet+ Eomes+ cells were identified as conventional NK cells, while lineage- T-bet+ Eomes- cells were identified as the probable rat counterpart of ILC1s based on their selective expression of the ILC marker CD200R. Rat ILC1s were particularly abundant in liver and intestinal tissues, and were functionally similar to NK cells. Single-cell transcriptomics of spleen and liver cells confirmed the main division of NK cells and ILC1-like cells, and demonstrated Granzyme A as an additional ILC1 marker. We further report differential distributions of NK cells and ILCs along the small and large intestines, and the association of certain bacterial taxa to frequencies of ILCs. In conclusion, we provide a framework for future studies of ILCs in diverse rat experimental models, and novel data on the potential interplay between commensals and intestinal ILCs.


Assuntos
Imunidade Inata , Linfócitos , Animais , Biomarcadores , Células Matadoras Naturais , Camundongos , Ratos , Fatores de Transcrição , Transcriptoma
19.
PLoS One ; 16(11): e0258700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34739484

RESUMO

Protecting healthcare professionals is crucial in maintaining a functioning healthcare system. The risk of infection and optimal preventive strategies for healthcare workers during the COVID-19 pandemic remain poorly understood. Here we report the results of a cohort study that included pre- and asymptomatic healthcare workers. A weekly testing regime has been performed in this cohort since the beginning of the COVID-19 pandemic to identify infected healthcare workers. Based on these observations we have developed a mathematical model of SARS-CoV-2 transmission that integrates the sources of infection from inside and outside the hospital. The data were used to study how regular testing and a desynchronisation protocol are effective in preventing transmission of COVID-19 infection at work, and compared both strategies in terms of workforce availability and cost-effectiveness. We showed that case incidence among healthcare workers is higher than would be explained solely by community infection. Furthermore, while testing and desynchronisation protocols are both effective in preventing nosocomial transmission, regular testing maintains work productivity with implementation costs.


Assuntos
Infecções Assintomáticas , Teste para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/economia , Pessoal de Saúde , SARS-CoV-2 , Algoritmos , Análise Custo-Benefício , Infecção Hospitalar , Coleta de Dados , Atenção à Saúde , Hospitais , Humanos , Programas de Rastreamento/métodos , Modelos Teóricos , Exposição Ocupacional , Pandemias , Risco , Processos Estocásticos , Suíça/epidemiologia
20.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577631

RESUMO

In this small pilot sub-study, longitudinal gut microbiota composition changes, after successful treatment of hepatitis C virus (HCV) with the co-formulated glecaprevir/pibrentasvir (GLE/PIB), were analyzed before treatment (baseline) and 12 weeks post-treatment. Participating patients provided a fresh stool sample the week before their study visit, from which microbial DNA was extracted and sequenced for the 16S rRNA region in an Illumina MiSeq2 platform. Microbial and statistical analyses were conducted to determine the alpha-diversity (number of different taxa within a sample) and beta-diversity (number of overlapping taxa between samples). Stool samples from 58 patients were eligible for analysis. There were 27 patients with HCV genotype 1, 10 with genotype 2, 16 with genotype 3, and 5 with genotype 4. No statistically significant differences in gut microbiota diversity, species richness, or microbial community pattern were found at baseline and at post-treatment Week 12. Lack of statistically significant differences remained consistent in further analysis by demographic and baseline disease characteristics. Surprisingly, no statistically significant changes in alpha- and beta-diversity were seen in the microbiota after GLE/PIB treatment, though there was a trend toward less richness over time. Further investigation is needed into this unexpected outcome to better understand the role of HCV treatment and the gut microbiota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...